
CajunBot: Architecture and
Algorithms

Arun Lakhotia,* Suresh Golconda,
and Anthony Maida
Computer Science Department
University of Louisiana at Lafayette
Lafayette, Louisiana 70503
e-mail: arun@louisiana.edu,
sxg3148@cacs.louisiana.edu,
maida@cacs.louisiana.edu

Pablo Mejia
C&C Technologies, Inc.
730 East Kaliste Saloom Road
Lafayette, Louisiana 70508
e-mail: pjm@cctechnol.com

Amit Puntambeker
Computer Science Department
University of Louisiana at Lafayette
Lafayette, Louisiana 70503
e-mail: axp5558@louisiana.edu

Guna Seetharaman
Air Force Institute of Technology
2950 Hobson Way
Wright Patterson Air Force Base, Ohio 45433
e-mail: guna@ieee.org

Scott Wilson
Center for Advanced Computer Studies
University of Louisiana at Lafayette
Lafayette, Louisiana 70503
e-mail: saw@louisiana.edu

Received 16 January 2006; accepted 12 May 2006

CajunBot, an autonomous ground vehicle and a finalist in the 2005 DARPA Grand Chal-
lenge, is built on the chassis of MAX IV, a six-wheeled all-terrain vehicle �ATV�. Trans-
formation of the ATV to an autonomous ground vehicle required adding drive-by-wire

The contents of this paper do not necessarily reflect the official positions of the authors’ respective organizations.
*To whom all correspondence should be addressed.

FIELD REPORT

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Journal of Field Robotics 23(8), 555–578 (2006) © 2006 Wiley Periodicals, Inc.
Published online in Wiley InterScience (www.interscience.wiley.com). • DOI: 10.1002/rob.20129



control, lidar sensors, an inertial navigation system �INS�, and a computing system. Sig-
nificant innovations in the core computational algorithms include an obstacle detection
algorithm that takes advantage of shocks and bumps to improve visibility; a path plan-
ning algorithm that takes into account the vehicle’s maneuverability limits to generate
paths that are navigable at high speed; efficient data structures and algorithms that re-
quire just a single Intel Pentium 4 HT 3.2 GHz machine to handle all computations and
a middleware layer that transparently distributes the computation to multiple machines,
if desired. In addition, CajunBot also features support technologies, such as a simulator,
playback of logged data, and live visualization on off-board computers to aid in devel-
opment, testing, and debugging. © 2006 Wiley Periodicals, Inc.

1. INTRODUCTION

CajunBot is a six-wheeled skid-steered autonomous
ground vehicle �AGV� developed to compete in the
DARPA Grand Challenge. The vehicle was a finalist
in both the 2004 and 2005 events. In the 2005 final, the
vehicle traveled 17 miles, at which point it did not re-
start after a prolonged pause. The cause: The motor
controlling its actuator burned out due to excessive
current for a long duration.

This paper presents the insights and innovations
resulting from the development of CajunBot. It is as-
sumed that the reader is familiar with the DARPA
Grand Challenge and technical challenges in devel-
oping autonomous ground vehicle �AGVs�. There ex-
ists an extensive body of research in various aspects
of AGVs. This paper does not attempt to provide a
survey of the literature; instead, it only compares spe-
cific innovations to works that are most closely
related.

The major innovations in CajunBot have been in
its software system, both on-board and off-board soft-
ware. The on-board software drives the vehicle au-
tonomously and the off-board software facilitates de-
velopment of on-board software.

• An obstacle detection system that does not
require stabilizing of sensors, rather it takes
advantage of bumps in the terrain to see
further.

• A local path planning algorithm that fuses
discrete and differential algorithms to gener-
ate vehicle navigable paths around obstacles.
The discrete component of the algorithm gen-
erates costs in a grid world and the differen-
tial component uses these costs to select the
best navigable curve from a precomputed
collection of curves.

• A layer of middleware for communication
between processes with specialized support
for fusing data from multiple sensors arriv-
ing at varying frequencies and latencies. The
support enables fusion of sensor data based
on the time of production of data, thereby en-
suring fusion of mutually consistent data.

• A physics-based simulator that generates a
simulated clock that may be used to synchro-
nize processes on simulation time, thereby
providing the capability to slow down, speed
up, and single step the processing in the labo-
ratory environment.

• Decomposing a visualizer as an independent
process, rather than as traditionally main-
tained as part of the simulator, thereby en-
abling the same visualizer to be used for vi-
sualizing vehicle state during field testing,
during simulation, and during postprocess-
ing by replaying logged data.

• A software architecture that enables easy re-
placement of components, thus making it
easy to maintain multiple, competing pro-
grams for the same task.

The rest of the paper is organized as follows. Sec-
tion 2 describes the hardware of CajunBot, which in-
cludes the automotive, electrical, and the electronics.
Section 3 describes the overall software architecture,
and describes the middleware, simulator, and visu-
alizer modules. Section 4 presents the core algorithms
for obstacle detection, local path planning, and con-
trol. Section 5 presents some open problems that are
being addressed by the team. Section 6 concludes the
paper, and is followed by acknowledgments and
references.

556 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob



2. HARDWARE: AUTOMOTIVE, ELECTRICAL,
ELECTRONICS

2.1. Automotive

The base of CajunBot is a MAX IV all-terrain vehicle
�ATV� manufactured by Recreative Industries, see
Figure 1. This vehicle was chosen because: �1� it can
operate on a variety of terrains, including, road,
rough surface, sand, water, and marshy conditions;
�2� it has a very small turning radius, about 1.2 m,
making it extremely maneuverable; �3� it is not very
wide, just about 1.5 m; and �4� its mechanics for
throttle and brakes is simple for interfacing with lin-
ear actuator and servomotor. The first property was
important, given expected conditions on the Grand
Challenge �GC� route. The next two properties
meant that we had more room to play in the soft-
ware. The last property made it easy for us to build
a drive-by-wire system.

In regards to the drive-by-wire system, it is in-
structive to know the mechanical points of contact
for throttle, braking, and turning. The throttle on the
vehicle is pulled by a cable, similar to that in a lawn
mower or a motor cycle. Being a skid-steered ve-
hicle, its braking and turning operations are inter-
connected. The vehicle turns by braking the wheels
on one side, see Figure 2. The vehicle has two levers,
with each lever controlling the transmission and
brakes of the set of wheels on one side. Pulling a

lever engages the brakes. Releasing the lever en-
gages the gear. Lastly, there is a region in between
that represents neutral.

The choice of a MAX IV had its downsides. The
top speed of the vehicle, about 45 kph, meant it
could not be a serious contender for a speed-
oriented track. The vehicle’s five gallon tank was
clearly insufficient for a 10+ h run, and had to be
retrofitted with a larger tank. The vehicle did not
have any enclosure or roof, thus, a frame had to be
built to house the electronics and for mounting sen-
sors. Its power generation capacity was woefully in-
adequate for our needs requiring us to add a genera-
tor. Finally, the absence of air conditioning implied
that we had to improvise the cooling system for
computers and electronics.

The most significant drawback of a MAX IV is
that it lacks any active suspension. Its wheels are its
suspension. Any bump or shock not absorbed by the
wheel is transferred to the rest of the body. We used
LORD’s center-bonded shock mounts �CBA 20-300�
to provide vibration and shock isolation to the new
frame, and therefore to the sensors mounted on the
frame. In addition, we used a MIL-spec Hardigg
Case with rack mount to further isolate the comput-
ers from shocks.

The shock mounts, however, did not change the
fact that the vehicle moves like a brick on wheels.
Any movements felt by its six axles, as the vehicle
travels over bumps, are transferred to the frame.
This led to interesting challenges when processing
sensors data, as elaborated later.

Figure 1. CajunBot.

Figure 2. Skid steered vehicle.

Lakhotia et al.: CajunBot: Architecture and Algorithms • 557

Journal of Field Robotics DOI 10.1002/rob



2.2. Electrical „Power… System

CajunBot requires around 1670 W of power for si-
multaneous peak performance of all the equipment

on board. When operating in the field, the necessary
power is generated by a Honda EU2000i generator,
fed to a 2200VA UPS unit, which then conditions the
power, and provides four power supplies—5 Vdc,
12 Vdc, 24 Vdc, and 110 Vac, as shown in Figure 3.
In the lab environment, the power may be switched
to a wall outlet.

2.3. Electronics

Figure 4 shows a schematic diagram of CajunBot’s
electronics, which may be viewed as being com-
posed of three major systems:

• Sensor systems
• Drive-by-wire system, and
• Computing system.

2.3.1. Sensor Systems

The components shown in the left column of Figure
4, identified as “INPUT,” constitute CajunBot’s sen-

Figure 3. CajunBot E-Power subsystem.

Figure 4. CajunBot electronic system.

558 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob



sor systems. The sensors may be further classified as
those needed for autonomous operation and those
for monitoring and emergency control.

CajunBot uses an inertial navigation system
�INS� �Oxford Technology Solutions RT3102� and
two lidar scanners �SICK LMS 291� for autonomous
operation. The accuracy of the INS is enhanced by
Starfire differential global positioning system �GPS�
correction signals provided by a C&C Technologies
C-Nav receiver. The lidars are mounted to look at
16 m and 16.3 m in the front of the vehicle, see Fig-
ure 5. CajunBot also performs well, albeit at a re-
duced speed, with only one lidar.

The sensors for monitoring and emergency con-
trol include the DARPA E-Stop, when performing in
the Grand Challenge; a remote control �RC� Receiver
to communicate with a RC Controller, used during
testing and for moving the vehicle around when not
in autonomous mode; a wireless access point to
broadcast data for real-time monitoring in a chase
vehicle; and two kill switches on each side of the
vehicle.

2.3.2. Drive-By-Wire System

The box annotated as the “Control Box” and the
components listed on the right column, annotated as
“OUTPUT,” in Figure 4, constitute the Drive-By-
Wire system.

The Drive-By-Wire System provides: �1� An in-
terface for computer control over the vehicle’s me-
chanics, i.e., throttle and levers, and signals, i.e., si-
ren, safety lights, and brake indicators; �2�
emergency control of the vehicle in autonomous
mode; and �3� manual control of the vehicle when
not in autonomous mode.

Computer control: The drive-by-wire system
provides serial communication interfaces for con-
trolling the vehicle through software. There are five
serial interfaces, one each for servo, left lever, right
lever, signals, and controls.

The servointerface receives a single byte value
representing the position of the servoconnected to
the throttle cable of the vehicle. The control box
translates the value into appropriate servosignals.
The interfaces for the left and right lever also behave
similarly, except that a motor controller is used to
communicate the commands to two actuators, one
connected to each lever.

The serial interface for signals uses one bit for
each of: Left and right turn signals, brake lights, kill
lights, strobe lights, and siren. The control box trans-
lates the bits received into an appropriate electrical
signal to activate/deactivate a relay for each device.

While the other interfaces principally receive
commands from the computers, the control interface
provides input to the computers. The control inter-
face currently provides single bit status indicators
for pause and kill signals.

Emergency control: The system supports three
emergency control operations: Disable, manual over-
ride, and pause. The first two operations are imple-
mented entirely in the Control Box, and override the
computers. The vehicle may be disabled by the kill
buttons on the vehicle, DARPA kill switch, or kill
button on the RC Controller. When a kill signal is
received, the drive-by-wire system pulls the left and
right levers to the brake position, cuts the throttle,
kills the engine, turns on a flashing light, and also
turns on the kill signal on the control interface to
inform the control software. For safety reasons when
the vehicle goes outside the RC controller’s range, a
kill signal is issued internally, unless the RC kill is
disabled.

The kill signal brings the vehicle to an abrupt
halt, which could be detrimental when a vehicle is
traveling at a high speed. Depending on the dexter-
ity of the operator in the chase vehicle, it may some-
times be preferred to take manual control of the ve-
hicle, and bring it to a safe state. This is achieved by

Figure 5. The top view of the top and bottom lidars.

Lakhotia et al.: CajunBot: Architecture and Algorithms • 559

Journal of Field Robotics DOI 10.1002/rob



toggling a button on the RC controller. The drive-by-
wire system then ignores the computer commands
and takes commands from the RC controller.

Finally, there is the pause signal, which is simply
passed on to the software, which then stops the ve-
hicle with maximum safe deceleration. In the pause
mode, both the software and the hardware continue
to operate. When the pause mode is removed, the
vehicle resumes autonomous operation.

Manual control: In nonautonomous �or manual�
mode, the vehicle is operated using an RC controller.
This operation is completely at the hardware level,
and does not require the computers to be turned on.

2.3.3. Computing System

The computing system, the collection of four com-
puters as shown in Figure 4, provides the computa-
tional power of CajunBot. The computers labeled
“Main Machine” and “Extra Machine” are Dell
PowerEdge 750s. CajunBot performed in the GC
with only the main machine. The extra machine was
in place if there was a need to distribute the compu-
tation. The other two computers “NTP Machine”
and “Disk Logger Machine” are mini-ITX boards,
used because of their low cost and small physical
size. Both the boards are mounted on the same 1-U
case. The computers were mounted on a shock proof
MIL-spec Hardigg cases to dampen the shocks.

The NTP Machine provides Network Time Pro-
tocol service, a service necessary to synchronize data
from multiple sensors and computers. Though NTP
is a light process, a separate machine is dedicated to
it for pragmatic reasons. To setup a Linux machine
as an NTP server requires applying a PPS patch. The
patch was available for Linux 2.4 Kernel, not for
Linux 2.6 Kernel, the base of Fedora Core 2 OS used
on our main computing machines. The Disk Logger
Machine is used for logging data during a run, typi-
cally for postanalysis. The logging operation is
moved to a separate machine so that a disk failure, a
very likely possibility in a 10 h run, does not inter-
fere with the autonomous operation. Using flash me-
dia for logging data would have circumvented the
need to have a separate machine for this purpose.
However, we were unable to boot the Dell Power-
Edge 750s from flash media, and had to use ma-
chines with disks.

Though all the devices could potentially be con-
nected on the same network, the system is config-
ured with three networks, once again for pragmatic

reasons. The first network, connects all the comput-
ers and the control box �via a Digi Terminal Server�
through the 16-port gigabit Ethernet switch. This
network carries data required for distributed pro-
cessing. The INS is not connected on the same net-
work because it required a certain network configu-
ration for optimal performance. Since the INS data
are used for all the phases of the processing, a sec-
ond network consisting of the INS, and all the com-
putational machines is configured. A third network
is configured to support real-time monitoring of the
system from a chase vehicle. This network consists
of the Disk Logger Machine connected to a wireless
access point. The access point is not connected to the
first network because the amount of data flowing on
it saturates the wireless device, thus disrupting real-
time monitoring. To overcome this problem, the Disk
Logger Machine samples the data before
broadcasting.

3. SOFTWARE ARCHITECTURE

Figure 6 depicts CajunBot’s software architecture.
The system is decomposed into several components
along functional boundaries. Each component, except

Figure 6. Software architecture.

560 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob



the Middleware, runs as an independent process
�program�. The modules “Obstacle Detection,” “Plan-
ner,” and “Navigator” implement the Core Algorithms
for autonomous behavior, and are discussed in the
next section. All other modules are considered Sup-
port Modules, and are described in this section along
with the design criteria that influence the software
architecture.

The Drivers, Simulator, and Playback modules
are mutually exclusive. While the Drivers module
provides an interface to a physical device, the Simu-
lator and the Playback modules provide virtual de-
vices, as described below. Only one of the three mod-
ules can be active at any time. The mutual exclusion
of the three modules is annotated in the architecture
diagram by the walls between these modules, akin to
the “�” symbol used in regular expressions.

3.1. Design Criteria

The following design criteria influence the software
architecture:

Device independence: There are multiple ven-
dors for sensors, such as, GPS, INS, lidars, and so
forth. The core algorithms of the system should not
depend on the specific device. It should be possible
to replace an existing device with another make/
model or to introduce a new device while making
only localized changes to the system.

Algorithm independence: Development of the
system is an iterative process, which involves choos-
ing between competing algorithms for the same
task. It should be possible to develop each algorithm
in isolation, that is, in a separate program, and
switch the algorithm being used by selecting some
configuration values.

Scalability: The computational requirements of
the system may vary as the system’s design evolves.
For instance, if CajunBot did not perform adequately
with two lidars and there was a need to add a third,
it would require more computational power. It
should be easy to add additional sensors and also
seamlessly distribute the application on multiple
computers.

Off-line testability: The definitive way to test
an AGV is to run it in the field. However, it is expen-
sive to test each submodule of the system and every
change by running the vehicle in the field. The sys-
tem should enable off-line �in the lab� testing of vari-
ous components and compositions of components.

Ease of debugging: To debug a system, one

needs access to internal data of the system. When
debugging an AGV, it is most valuable if the internal
data are available in real-time, when the vehicle is
running. Debugging also requires performing the
same operation over and over again, for one may
not observe all the cues in a single run. The system
should support: �1� Real-time monitoring of internal
state of its various components, and also �2� the abil-
ity to replay the internal states time-synchronized.
The system should also support �3� presenting the
data, which is expected to be voluminous, in a
graphical form to enable ease of analysis.

3.2. CajunBot Middleware

The Middleware module, CBWare, provides the in-
frastructure for communication between distributed
processes �CajunBot programs�, such that the pro-
ducers and consumers of data are independent of
each other. Except for the properties of the data writ-
ten to or read from CBWare, a module in the system
does not need to know anything else about the mod-
ule that has generated or will consume the data. This
decoupling of modules is central to achieving the
design criteria listed above.

CBWare provides two types of interfaces: A
typed queue interface, CBQueues, for reading and
writing messages, and a typed message packet inter-
face, CBPackets, for only writing messages, and a
typed message packet may also find its way into a
queue, from where it may be read.

CBQueues provides distributed queues using a
combination of POSIX Shared Memory �Marshall,
1999� and UDP communication. On an individual
machine the queues are maintained as circular lists
in the shared memory. The data written to a queue is
distributed to other computers using a UDP broad-
cast. Figure 7 depicts how distributed interprocess
communication is achieved by replicating shared
memory queues across machines. This feature of
CBWare to distribute queues over other machines al-
lowed easy porting of programs over to multiple
machines, achieving easy scalability of computa-
tional power; one of the design criteria.

CBQueues imposes an important constraint:
Each queue can have only one writer, but there is no
limit on the number of readers. The single writer
�producer� restriction ensures that the data in each
distributed queue can be temporally ordered at the
time the data were produced. If multiple producers

Lakhotia et al.: CajunBot: Architecture and Algorithms • 561

Journal of Field Robotics DOI 10.1002/rob



of similar type of data exist, such as multiple lidars,
a separate queue is maintained for each producer.

Besides providing the usual interfaces to access
a queue, CBQueues also provides an interface to find
in a queue two data items produced around a par-
ticular time. This capability, made possible due to
the temporal ordering of data in the queues, pro-
vides support for fusion of data from multiple
sources based on the time of production. When two
sources generate data at different frequencies, it may
not always be appropriate to use the most recent
data from both sources. Doing so may lead to the
fusion of mutually inconsistent data. For instance,
when a lidar scan is mapped to global coordinates
using the INS data, the resulting coordinates would
have significant error if the vehicle experienced a
sharp bump immediately after the scan. In such
cases, it is better to fuse data in close temporal prox-
imity. Along the same lines, instead of using the data
generated directly by a source, sometimes it is pre-
ferred to interpolate the data for the specific time
when data from another source are produced. In our
lidar and INS example, it may be preferred to inter-
polate the position of the vehicle to match the time
of lidar scan.

The CBPackets interface provides support for
multiple writers and multiple readers. However, in
so doing it cannot support temporal fusion of data.
This interface is most useful for distributing status,
warning, and error messages. Such messages are
used in isolation, that is, they are not fused with
other messages, and are mostly used for monitoring,
not control.

CBWare serves the same purpose as NIST’s Neu-
tral Message Language �Shackleford, Proctor &
Michaloski, 2000�, Simmons & James’ CMU-IPC
�Simmons & James, 2001�, or RTI’s NDDS �Pardo-
Castellote & Hamilton, 1999�, to cite a few middle-
ware frameworks for real-time distributed systems.
While CBWare shares several similarities with each
of these systems, such as publish-subscribe commu-
nication, the fundamental, and most crucial differ-
ence is that CBWare supports the fusion of the sen-
sor �and other data� based on the time of production.
This support has been an important contributor in
CajunBot’s ability to increase its sensor performance
by leveraging rough terrain.

3.3. Data Logger

The Data Logger is run on the Disk Logger machine.
Besides logging the data on disk, the Data Logger
broadcasts data on the wireless network for real-
time monitoring in a chase vehicle. CajunBot com-
municates with the chase vehicle on an 802.11G
wireless network. The variety of wireless communi-
cation equipment we have tried tends to crash when
all data produced in the queues are put in the air.
This is particularly true when, for the purpose of
debugging, the internal states of the Obstacle Detec-
tion and Local Planner modules are broadcast. To
accommodate for the shortcomings of the wireless
network, the data logger has a provision to sample
the data at some prescribed interval. If disk space is
an issue, it also provides support to save only a
sample of the data.

3.4. Drivers

Device independence is achieved by having a sepa-
rate program, referred to as a Driver, to interact with
a particular device. The Drivers are divided into two
classes: �1� Sensor drivers, which read input data
from sensors, such as the INS and lidars, and �2�
control drivers, which control devices, such as the
throttle, left and right levers, safety lights, siren, kill
lights, brake lights, and indicator lights.

Besides hiding the details of communicating
with the device, a driver also transforms the data to
match units and conventions used by the rest of the
system. For instance, the CajunBot system measures
angles in the counterclockwise direction, with East
as zero. If an IMU or INS uses any other convention
for measuring angles, its corresponding device

Figure 7. Distributed onboard software architecture.

562 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob



driver transforms angles from the device’s conven-
tion to CajunBot’s convention. Similarly, most GPS
and INS equipment tends to provide vehicle posi-
tion in latitude/longitude, which is translated by the
driver to Universal Transverse Mercator �UTM� co-
ordinates, as used by the CajunBot system.

3.5. Simulator

Off-line testability is a direct outcome of device in-
dependence. Since the core algorithms are unaware
of the source/destination of the data, the data do not
have to come from or go to an actual device. The
algorithms may as well interact with virtual devices
and a virtual world. The Simulator module �and the
Playback module, discussed later� creates a virtual
world in which the core algorithms can be tested in
the laboratory.

CajunBot’s Simulator, CBSim, is a physics-based
simulator developed using the Open Dynamics En-
gine physics engine. Along with simulating the ve-
hicle dynamics and terrain, CBSim also simulates all
the onboard sensors. It populates the same CBWare
queues with data in the same format as the sensor
drivers. It also reads vehicle control commands from
CBWare queues and interprets them to have the de-
sired effect on the simulated vehicle.

While CBSim is a physics-based simulator, such
as Stage �Gerkey, Vaughan & Howard, 2003� and Ga-
zebo �Vaughan, 2000�, it has two interesting differ-
ences. First, CBSim does not provide any visual/
graphical interface. The visualization of the world
and the vehicle state is provided by the Visualizer
module, discussed later. Second, CBSim also gener-
ates a clock, albeit a simulated one, using the
CBWare queues.

The simulated clock helps in synchronizing the
distributed programs when running in a virtual
world. The distributed programs of CajunBot have a
read-process-output-sleep loop, as will be elaborated
upon later. The frequency at which a program is
scheduled is controlled by choosing the duration for
which it sleeps. When operating in the real-world,
the duration of “sleep” is measured in elapsed real
time. However, it is not beneficial to use elapsed real
time to control the sleep duration of a process when
operating in a virtual environment. In particular, us-
ing the real time for controlling sleep forces the
simulation to execute at the same pace as the real
program, even when one may be using faster and

better computers. Thus, when operating in a virtual
environment, we use the elapsed simulated time to
determine how long a process sleeps.

By maintaining a system-wide simulated time,
the CajunBot system is able to create a higher fidelity
simulation than that provided by Stage and Gazebo.
The computation in the entire system can be stopped
by stopping the clock; and its speed can be altered
by slowing down or speeding up the clock. This also
makes it feasible to run the application in a single-
step mode, executing one cycle of all programs at a
time, thereby significantly improving testing and
debugging.

3.6. Playback

Offline-testing and debugging is further aided by
the Playback module. This module reads data
logged from the disk and populates CBWare queues
associated with the data. The order in which data are
placed in different queues is determined by the time
stamp of the data. This ensures that the queues are
populated in the same relative order. In addition, the
Playback module, like the Simulator module, gener-
ates the simulator time queue representing the
system-wide clock.

This simple act of playing back the logged data
has several benefits. In the simplest use, the data can
be visualized �using the Visualizer module� over and
over again, to replay a scenario that may have oc-
curred in the field or the simulator. It offers the abil-
ity to replay a run after a certain milestone, such as a
certain amount of elapsed time or a waypoint is
crossed. In a more significant use, the playback mod-
ule can also be used to test the core algorithms with
archived data. This capability has been instrumental
in helping us refine and tune our obstacle detection
algorithm. It is our common operating procedure to
drive the vehicle over some terrain �such as during
the DARPA National Qualifying Event �NQE��, play-
back the INS and lidar data, apply the obstacle de-
tection algorithm on the data, and then tune the pa-
rameters to improve the obstacle detection
accuracy.

3.7. Visualizer

Real-time and off-line debugging is supported by
CBViz, the Visualizer module. CBViz is an OpenGL
graphical program that presents visual/graphical
views of the world seen by the system. It accesses

Lakhotia et al.: CajunBot: Architecture and Algorithms • 563

Journal of Field Robotics DOI 10.1002/rob



the data to be viewed from the CBWare queues.
Thus, CBViz may be used to visualize data live, dur-
ing field tests and simulated tests, as well as visual-
izing logged data using the Playback module.

Since communication between processes occurs
using CBWare, CBViz can visualize data flow be-
tween processes. We have also found it beneficial to
create special queues in CBWare and provide CBViz
with data that are otherwise internal to a process.
This capability has been very effective, and almost
essential, in achieving the Ease of Debugging design
criterion as listed above.

4. ALGORITHMS

This section presents the algorithms underlying Ca-
junBot’s autonomous behavior.

Figure 8 presents the system-level data flow dia-
gram �DFD�. Although CajunBot’s system uses the
blackboard architecture, see Figure 6, the system-
level DFD of Figure 8 shows the actual data flows.
Each step in the system level DFD is implemented by

one or more independent programs. Each program
has the following pattern:

while (true) �
read inputs;
perform processing;
generate outputs;
sleep for a specified time

�

The overall steps are depicted in Figure 8. The
INS data read in Step 1 give the vehicle’s state, which
includes position in UTM coordinate space, orienta-
tions along the three dimensions �i.e., heading, roll,
and pitch�, speed over ground, and accelerations
along the three dimensions. The lidar generates a se-
quence of scans, with each scan containing a collec-
tion of beams. Each beam is a value in polar coordi-
nate space. The lidar scans are read in Step 2. In Step
3, the lidar scans and vehicle state �at the time of the
scan� are used by the Obstacle Detection Module to
create a Terrain Obstacle Map �TOM�. The TOM is a
map of obstacles in the vicinity of the vehicle. The Lo-
cal Path Planner Module �Step 4� uses the TOM and
the vehicle’s state to generate a Navigation Plan. This
consists of a sequence of waypoints and the recom-
mended speed along each segment. The Navigation
Plan is used by the Navigator Module, Step 5, to gen-
erate steering and throttle commands. In executing
the plan, the Navigator takes the safety of the vehicle
into account. Finally, the Control Drivers �Step 6� map
the steering and throttle commands to physical de-
vices. This includes the throttle servoposition and ac-
tuator positions for brake control. The Pause and Kill
Signals are read by the Signal Driver �Step 7�. These
signals are used by the Obstacle Detection and Navi-
gator Modules, as described later. The Navigator
Module also controls the emergency signals, siren,
and flashing lights.

The system does not use any explicit real-time
primitives. Each program runs in an endless loop,
reading from its input CBWare queues and writing to
its output CBWare queues. When explicit syncroniza-
tion is needed between the producer and consumer of
some data, the consumer uses CBWare primitives
that block it if no new data are available from the re-
spective producer. Further, the sleep step of each pro-
gram is tuned to have the program run at a certain
frequency. The rate at which various programs of Fig-
ure 8 operate are provided in Table I.

The algorithms for the Obstacle Detection, Local

Figure 8. System level data flow diagram.

564 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob



Path Planner, and Motion Controller Modules are key
to providing the autonomous behavior and are de-
scribed next.

4.1. Obstacle Detection Module

This section summarizes CajunBot’s obstacle detec-
tion algorithm and highlights the specific features
that enable it to take advantage of vibrations along
the height axis, i.e., bumps, to improve its ability to
detect obstacles.

4.1.1. The Algorithm

The data flow diagram in Figure 9 enumerates the
major steps of the obstacle detection algorithm. The

algorithm takes the vehicle’s state and lidar scans as
input. The vehicle state data are filtered to attend to
spikes in data due to sensor errors �Step 3.1�, and
then used to compute the global coordinates for the
locations from which the beams in a lidar scan were
reflected �Step 3.2�. The global coordinates form a
three-dimensional �3D� space with the X and Y axes
corresponding to the Easting and Northing axes of
UTM Coordinates, and the Z axis giving the height
above sea level. Virtual triangular surfaces with
sides of length 0.20 m to 0.40 m are created with the
global points as the vertices. The slope of each such
surface is computed and associated with the cen-
troid of the triangle �Step 3.3�. A vector product of
the sides of the triangle yields the slope. The height
and slope information is maintained in a digital ter-
rain map, which is an infinite grid of 0.32 m
�0.32 m cells. A small part of this grid within the
vicinity of the vehicle is analyzed to determine
whether each cell contains obstacles �Step 3.4�. This
data are then extracted as a Terrain Obstacle Map.

Figure 10 graphically depicts data from the steps
discussed above. The figure presents pertinent data
at a particular instant of time. The gray region rep-
resents the path between two waypoints. The radial
lines emanating from the lower part of the figure
show the lidar beams. There are two sets of lidar
beams, one for each lidar. Only beams that are re-
flected from some object or surface are shown. The
scattering of black dots represent the global points,
the points where lidar beams from some previous
iteration had reflected. The figure is scattered with
triangles created from the global points. Only global
points that satisfy the spatiotemporal constraints,
discussed later, are part of triangles. There is a lag in
the data being displayed. The displayed triangles,
the global points, and the lidar beam are not from
the same instant. Hence, some points that can make
suitable triangles are not shown to form triangles.
The shade of the triangles in Figure 10 represents the
magnitude of slopes. The black triangles have a high
slope, ±90°, and the ones with lighter shades have
much smaller slopes. In the figure, a trash can is
detected as an obstacle, as shown by the heap of
black triangles. The data were collected in UL’s
Horse Farm, a farm with an ungraded surface. The
scattering of dark triangles is a result of the uneven
surface.

An obstacle is classified as such by using the
following steps. First, a cell is tagged as a “potential”
obstacle if it satisfies one of three criteria. The num-

Table I. Operating frequencies of programs of Figure 8.

Program Frequency �Hz�

INS driver 100

Lidar driver 75

Obstacle detection 15

Local planner 5

Navigator 20

Control drivers 20

Figure 9. Data flow diagram for the obstacle detection
module.

Lakhotia et al.: CajunBot: Architecture and Algorithms • 565

Journal of Field Robotics DOI 10.1002/rob



ber of times a cell is categorized as a potential ob-
stacle by a criterion is counted. If this count exceeds
a threshold—a separate threshold for each
criterion—it is deemed an obstacle. The criteria used
to determine the classification of a cell as a potential
obstacle are as follows:

High absolute slope: A cell is deemed as a po-
tential obstacle if the absolute maximum slope is
greater than 40°. Large objects, such as, cars, fences,
and walls, for which all three vertices of a triangle
can fall on the object, are identified as potential ob-
stacles by this criterion. The threshold angle of 40° is
chosen because CajunBot cannot physically climb
such a slope. Thus, this criterion also helps in keep-
ing CajunBot away from unnavigable surfaces.

High relative slope: A cell is deemed as a poten-
tial obstacle if: �1� The maximum difference between
the slope of a cell and a neighbor is greater than 40°
and �2� if the maximum difference between the

heights of the cell and that neighbor is greater than
23 cm. This criterion helps in detecting rocks as ob-
stacles, when the rock is not large enough to register
three lidar beams that would form a triangle satisfy-
ing the spatiotemporal constraint. The criterion also
helps in detecting large obstacles when traveling on
a slope, for the relative slope of the obstacle may be
90°, but the absolute slope may be less than 40°. The
test for height difference ensures that small rocks
and bushes are not deemed as a potential obstacle.
The height 23 cm is 2 cm more than the ground
clearance of CajunBot.

High relative height: A cell is deemed as a po-
tential obstacle if the difference between its height
and the height of any of its neighbor is greater than
23 cm. This criterion aids in detecting narrow ob-
stacles, such as poles, that may register very few li-
dar hits.

The threshold counts of 5, 5, and 12, respectively,

Figure 10. Virtual triangle visualization.

566 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob



are used for the three criteria to confirm that a po-
tential obstacle is, indeed, an actual obstacle.

As a matter of caution, Step 3.3 disables any pro-
cessing when the Pause Signal is activated. This pre-
vents the system from being corrupted if someone
walks in front of the vehicle when the vehicle is
paused, as may be expected since the Pause Signal is
activated during startup and in an emergency.

4.1.2. Utilizing Bumps to Enhance Obstacle
Detection Distance

Figure 11 presents evidence that the algorithm’s ob-
stacle detection distance improves with roughness of
the terrain �bumps�. The figure plots data logged by
CajunBot traveling at 7 m/s through a distance of
about 640 m of a bumpy section during the 2005 GC
Final. The X axis of the plot represents the absolute
acceleration along the height �Z� axis at a particular
time. Greater acceleration implies greater bumps.
The Y axis represents the largest distance from the
vehicle at which an obstacle is recorded in the TOM.
The plot is the result of pairing, at a particular in-
stance, the vehicle’s Z acceleration with the furthest
recorded obstacle in the TOM �which need not al-
ways be the furthest point where the lidar beams

hit�. The plot shows that the obstacle detection dis-
tance increases almost linearly with the severity of
bumps experienced by the vehicle. The absolute ver-
tical acceleration was never less than 0.1 m/s2 be-
cause the vehicle travelled at a high speed of 10 m/s
on a rough terrain. The facts that the onboard video
did not show any obstacles on the track and the ob-
stacle detector also did not place any obstacles on
the track lead us to believe that the method did not
detect any false obstacles.

Bumps along the road have an impact on two
steps of the algorithm, Step 3.2, where data from the
INS and lidar are fused and, Step 3.3, when data
from beams from multiple lidar scans are collected
to create a triangular surface. The issues and solu-
tions for each of these steps are elaborated below.

In order to meaningfully fuse INS and lidar
data, it is important that the INS data give the ori-
entation of the lidars at the time a scan is read. Since
it is not feasible to mount an INS on top of a lidar,
due to the bulk and cost of an INS, the next logical
solution is to mount the two, such that they are mu-
tually rigid; that is, the two units experience the
same movements. There are three general strategies
to ensure mutual rigidity between sensors. �1� Using
a vehicle with a very good suspension so as to
dampen sudden rotational movements of the whole
body and mounting the sensors anywhere in the
body. �2� Mounting the sensors on a platform stabi-
lized by a Gimbal or other stabilizers. �3� Mounting
all sensors on a single platform and ensuring that
the entire platform is rigid �i.e., does not have tuning
fork effects�. Of course, it is also possible to combine
the three methods.

CajunBot uses the third strategy. The sensor
mounting areas of the metal frame we created are
rigid, strengthened by trusses and beams. In con-
trast, most other GC teams used the first strategy
and the two Red Teams used a combination of the
first two strategies.

Strategy 3, in itself, does not completely ensure
that mutually consistent INS and lidar data will be
used for fusion. The problem still remains that the
sensors generate data at different frequencies. Ox-
ford RT 3102 generates data at 100 Hz, producing
data at 10 ms intervals, whereas a SICK LMS 291
lidar operates at 75 Hz, producing scans separated
by 13 ms intervals. Thus, the most recent INS read-
ing available when a lidar scan is read may be up to
9 ms old. Since a rigid sensor mount does not
dampen rotational movements, it is also possible

Figure 11. Graph showing distance to detected obstacles
versus Z acceleration.

Lakhotia et al.: CajunBot: Architecture and Algorithms • 567

Journal of Field Robotics DOI 10.1002/rob



that the INS may record a very different orientation
than the time when the LMS data are recorded. Fus-
ing these readings can give erroneous results, more
so because an angular difference of a fraction of a
degree can result in a lidar beam being mapped to a
global point several feet away from the correct
location.

The temporally ordered queues of CBWare and
its support for interpolating data help in addressing
the issue resulting from differences in the through-
put of the sensors. Instead of fusing the most recent
data from the two sensors, Step 3.2 computes global
points by using the vehicle state generated by inter-
polating the state immediately before and immedi-
ately after the time when a lidar scan was read. Ro-
bots with some mechanism for stabilizing sensors
can fuse a lidar scan with the most recent INS data
because the stabilizing mechanism dampens rota-
tional movements, thus ensuring that the sensors
will not experience significantly different orienta-
tions in any 10 ms period.

The absence of a sensor stabilizer also influences
Step 3.3, wherein triangular surfaces are created by
collecting global points corresponding to lidar
beams. Since CajunBot’s sensors are not stabilized,
its successive scans do not incrementally sweep the

surface. Instead, the scans are scattered over the sur-
face as shown in Figure 12. This makes it impossible
to create a sufficient number of triangular surfaces of
sides 0.20 m to 0.40 m using points from successive
scans �or even ten successive scans�. It is always pos-
sible to create very large triangles, but then the slope
of such a triangle is not always a good approxima-
tion for the actual slope of its centroid.

If the GPS/INS data were very precise, then tri-
angles of desired dimensions could be created by
saving the global points from Step 3.2 in a terrain
matrix, and finding groups of three points at a de-
sired spatial distance. This is not practical because of
Z drift—the drift in Z values reported by a GPS �and
therefore by the INS� over time. When stationary, a
drift of 10 cm–25 cm in Z values can make even a
flat surface appear uneven.

The Z-drift issue can be addressed by taking
into account the time when a particular global point
was observed. In other words, a global point is a
four-dimensional �4D� value �x, y, z, and time of
measurement�. Besides requiring that the spatial dis-
tance between the points of a triangular surface be
within 0.20 m and 0.40 m, Step 3.3 also requires that
their temporal distance be under 3 s.

Figure 12. Lidar beams scattered due to bumps.

568 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob



To recap, the following features of the Obstacle
Detection Module enables it to utilize bumps to im-
prove obstacle detection distance:

• A rigid frame for mounting all sensors,
• Fusing a mutually consistent lidar scan with

INS data based on the time of data produc-
tion, and

• Using 4D space and spatiotemporal con-
straints for creating triangles to compute the
slope of locations in the 3D world.

4.1.3. Performance Evaluation on 2005 GC Data

We now turn to the question of efficiency and scal-
ability of the algorithm. Tables II and III present the
following data for a single lidar and lidar pair
configuration.

CPU Utilization. The average “percentage of
central processing unit �CPU� utilization,” as re-
ported by the Linux utility top, sampled every
second.

Increase in CPU. The percentage of increase in
CPU utilization going from one lidar configuration
to a configuration of two lidars.

Table II gives the data when the terrain was not
very bumpy, whereas Table III presents data for
bumpy terrain in the actual Grand Challenge Final
Run. In both situations, adding another lidar re-
duces the obstacle detection time at a higher rate
�38–48%� than the increase in the CPU utilization

�22–28%�. This implies that our algorithm scales well
with additional lidars, since the benefits of adding a
lidar exceed the costs.

Comparing data across Tables II and III further
substantiates that our algorithm takes advantage of
bumps. Compare the data for the single lidar con-
figurations in the two tables. The CPU utilization is
lower when the terrain is bumpy. The same is true
for the dual lidar configuration. The more interesting
point is that adding another lidar does not lead to
the same increase in CPU utilization for the two
forms of terrain. For the bumpy terrain, the CPU
utilization increased by 22.32%, which is signifi-
cantly less than the 28.23% increase for the smoother
terrain. This efficient and scalable implementation is
due to two factors. First, in Step 3.3, it is not neces-
sary that the triangles be created using global points
observed by the same lidar. The data may be from
multiple lidars. The only requirement is that the cre-
ated triangles satisfy the spatiotemporal constraints.
The second factor is that we utilize an efficient data
structure for maintaining the 4D space. Though the
4D space is infinite, an efficient representation is
achieved from the observation that only the most
recent 3 s of the space need to be represented. This
follows from the temporal constraint and that one
point of each triangle created in Step 3.3 is always
from the most recent scan.

4.2. Local Path Planner Module

The route data description format �RDDF� file, pro-
vided as input to the vehicle, may be considered a
global plan; a plan computed in response to some
global mission. The Local Path Planner Module’s
role is to create a navigation plan to advance the
vehicle toward its mission taking into account the
ground realities observed by the sensors. The navi-
gation plan is a sequence of local waypoints that di-
rects the vehicle toward an intermediate goal, while
staying within the lateral boundary and avoiding
obstacles. The intermediate goal—a point on the
RDDF route at a fixed distance away from the
vehicle—advances as the vehicle makes progress.
Also associated with each local waypoint is a speed
that is within the speed limits prescribed in the glo-
bal plan and one that can be safely achieved by the
vehicle.

Figure 13 presents the logical data flow diagram

Table II. Effect of number of lidars, with low average
bumps: 0.11 m/s2.

Effect 1 lidar 2 lidars

CPU utilization 12.4% 15.9%

Increase in CPU 28.23%

Table III. Effect of number of lidars, with high average
bumps: 0.24 m/s2.

Effect 1 lidar 2 lidars

CPU utilization 11.2% 13.7%

Increase in CPU 22.32%

Lakhotia et al.: CajunBot: Architecture and Algorithms • 569

Journal of Field Robotics DOI 10.1002/rob



of the local path planner.1 The algorithm maintains
two grid representations of the world; a persistent
grid and a temporary grid. The persistent grid uses
Easting and Northing coordinates, whereas the tem-
porary grid uses the vehicle’s own coordinate space.
As the name suggests, the persistent grid retains
data between iterations of the algorithm, whereas
the temporary grid is created a new for each
iteration. The following is the explanation of the
steps followed by local path planner as shown in
Figure 13.

Step 4.1 updates “assigned costs” in the Persis-
tent Grid. A cell in the persistent grid is assigned
two types of costs; obstacle cost and boundary cost. The
obstacle cost is based on the proximity of a cell to an
obstacle. The boundary cost is based on its proxim-
ity to the boundary. The locations of obstacles are
obtained from the Terrain Obstacle Model. To enable
treating the vehicle as a point object, each obstacle is
expanded in two concentric circles, as shown in Fig-

ure 14. First, the region within the inner circle is
called the hard obstacle expansion region. Each cell
inside this circle is assigned an infinite obstacle cost.
The fact that the point vehicle is in this region im-
plies that the vehicle has crashed into some object.
The hard expansion indicates the area the vehicle
must avoid at any cost. Second, the region between
the inner and the outer circle is called the soft ob-
stacle expansion region. Cells in this region are as-
signed a smaller obstacle cost, and the cost decreases
radially outward. The soft expansion region discour-
ages the local path planner from picking a path too
close to an obstacle, unless it is absolutely necessary.
Cells outside the soft expansion region are assigned
a zero-obstacle cost. Figure 14 also depicts three
types of lateral boundary expansion regions: The
warning region, soft expansion region, and a hard
expansion region. The warning region is 0.3 m wide
and about 0.7 m distance within the lateral bound-
ary in the direction toward the center of the track.
When the �point� vehicle is in this region, its wheels
will barely be inside of the lateral boundary. The
cells in the warning region are given a very small
boundary cost, a cost sufficient to keep the vehicle
away from the lateral boundary. The soft expansion

1Note that branches in a DFD represent branching of data flow,
not of control.

Figure 13. Data flow diagram for the navigator module.

Figure 14. Obstacle and boundary costs.

570 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob



region starts outside of the warning region and ex-
tends past the lateral boundary for about 2 m. Cells
in this region have a slightly higher boundary cost
than those in the warning region. This cost is in-
tended to “aggressively” prevent the vehicle from
crossing over the lateral boundary; and if the vehicle
happens to be in the lateral boundary, it aggressively
pushes it back. The region outside of the track, fur-
ther past the soft expansion region, is called the hard
expansion region. Cells in this region are assigned
an infinite boundary cost. Like the hard obstacle ex-
pansion region, this region is considered to be un-
safe for the vehicle and should be avoided at any
cost. Cells inside the track, between the warning re-
gion, are assigned a zero-boundary cost.

Step 4.2 uses the Vehicle State and the Next Glo-
bal Waypoint information to create the temporary
grid, which involves allocating memory, marking
the cells for the intermediate goal, and marking the
position of the vehicle.

Step 4.3 computes the Grid Distance Cost �GDC�
�Maida, Golconda, Mejia & Lakhotia, 2006; Bar-
raquand, Langlois & Latombe, 1992� for the cells in-
between the vehicle and the intermediate goal on the
temporary grid. Each cell of the temporary grid has
three costs associated with it: Obstacle cost, lateral
boundary cost, and cell cost. Obstacle costs and lat-
eral boundary costs are taken from the correspond-
ing cell of the persistent grid, computed in Step 4.1.
The cell cost represents the cost of traveling from
that cell to the goal cell. It includes distance to the
goal, and the penalty for traveling close to obstacles
and lateral boundary.

The following recursive equations describe the
relation between the cell cost C�i� of a cell i and the
cell costs of its neighbors nbs�i�:

C�i�=0, i is a goal cell,
C�i�=min�C�j�+T�j , i� � j�nbs�i�� , i is not a goal cell,

where T�j , i�=CF�j , i�� �1+B�j�+O�j�� is the cost of
traveling from cell j to cell i, CF�j , i� is the Chamfer
Factor �de Smith, 2004�, B�j� is the boundary cost of
cell j, and O�j� is the obstacle cost of cell j.

The fixed point of the above system of equations
gives the desired cost. We use the A* algorithm to
efficiently direct the propagation of costs from the
goal toward the vehicle.

Step 4.4 overlays on the temporary grid a set of
precomputed curves representing acceptable move-
ments of the vehicle. The curves are truncated at the

point where they enter an obstacle cell, or a lateral
boundary cell. Figure 15 shows the maneuverable
curves in an obstacle-free world. The curves origi-
nate at the vehicle and spread out along the orienta-
tion of the vehicle. These curves are precomputed
only once by simulating the vehicle’s steering con-
trol �Scheuer & Xie, 1999; Scheuer & Laugier, 1999�.
Unlike curve computations based on Dubin’s car
�Dubins, 1957�, our collection of curves does not rep-
resent all possible maneuvers that can be made by
the vehicle. Instead, as evident from Figure 15, our
collection contains straight-line curves—those curves
emanating in the direction of the vehicle’s heading;
floral curves—curves that diverge from the current
heading of the vehicle like a floral arrangement; and
onion curves—the curves that diverge from the
straight path and then converge back—like layers in
an onion. A combination of straight-line, floral, and
onion curves is found to be sufficient to go around
obstacles and make various types of turns. This is
because the Local Path Planner generates a new
navigation plan in every iteration. When an obstacle
is first seen, an onion curve diverts the vehicle away
from the obstacle. In a subsequent iteration, a floral
curve brings the vehicle smoothly back on track.

Step 4.5 uses the temporary grid, annotated with
the GDC, and projected curves to select the Best
Curve. This is done in two steps. First, a set of can-
didate curves is selected from the projected curves.
Second, a Best Curve is selected from the candidate
curves. Each curve is evaluated on three properties;
namely, �1� length of the curve, �2� final cost to the
goal, i.e., the cell cost of the cell where the curve
terminates, and �3� the rate of reduction in the cell
cost. The latter is the reduction in cell cost from the
start of the curve to the end of the curve, divided by
the cost of traveling through each cell—T�j , i� de-
scribed earlier—along the curve. The candidate
curves are selected from the projected curves by
eliminating curves as follows. First, all curves that

Figure 15. Maneuverable curves of CajunBot.

Lakhotia et al.: CajunBot: Architecture and Algorithms • 571

Journal of Field Robotics DOI 10.1002/rob



are smaller than a minimum acceptable length are
removed. Next, of the remaining curves, the smallest
final cost to the goal is found. All curves whose final
cost to the goal is greater than some threshold more
than the smallest final cost are removed. Finally, the
highest rate of reduction in cell cost of the remaining
curves is found. Any curve whose rate of reduction
is less than some threshold of the highest is re-
moved. Now, the Best Curve of the set of candidate
curves is the curve with the end point closest to the
centroid of the all the candidate curves. If the set of
candidate curves is empty, the path planner reports
that it cannot generate any path.

Step 4.6 converts the best curve into a sequence
of local waypoints. This step also annotates each
waypoint with a recommended speed, which is com-
puted using the RDDF speed, the distance to the
nearest obstacle, and the amount of turn to make at
that waypoint.

The key innovation of our algorithm is that it is
a hybrid of discrete and differential algorithms �see
LaValle, 2006, for a comprehensive survey on plan-
ning algorithms�. Step 4.3, the discrete part of the
algorithm, computes GDC without taking into ac-
count the vehicle’s state. Steps 4.4 and 4.5, the differ-
ential components of the algorithm, take the vehi-
cle’s state and its maneuverability into account to
pick the Best Curve. By combining discrete and dif-
ferential algorithms, we are able to get the best of
both worlds. The discrete algorithm is fast and effi-
cient, and hence can be used for planning over a
large area. The differential component computes a
path only in the vicinity of the vehicle. But, since the
path selected is based on GDC, the curve chosen
may be influenced by terrain conditions much fur-
ther away. Thus, the navigation plan created is ma-
neuverable within the vicinity of the vehicle and
also brings the vehicle to a position close to an opti-
mal path.

There are other nontrivial and interesting as-
pects of the algorithm that are worthy of explana-
tion: �1� Representation of the goal; and �2� represen-
tation of robot and obstacles to aid in creation of
navigable paths.

Representation of goal: The size and shape of
the goal has a very significant effect on the paths
created by the algorithm. If the goal is a point object
on the center line, and there is an obstacle near the
goal, the path generated will hug the boundaries of
the obstacle even if there is a large amount of free
space on the track. If the goal is a straight line en-

compassing the whole segment, perpendicular to the
direction of motion, then the path may hug the cor-
ners after a turn, since that will be the shortest path.

We use a V-shaped goal, with an angle of about
150° at the vertex. When there are no obstacles on
the track, the tip of the V-goal smoothly brings the
vehicle to the center of the track. However, if there is
an obstacle on the center lane of the track, the path
generated will smoothly deflect away from the ob-
stacle aiming for some other point on the V-shaped
goal.

Representation of robot and obstacles: The
classical approach to path planning for a circular ro-
bot with unlimited mobility is to model the robot as
a point object and to expand an obstacle cell in a
circle the same dimension as the robot �Feng, Singh
& Krogh, 1990; Stentz & Hebert, 1995�. Whether or
not the robot placed in a particular cell will collide
with an obstacle can be determined by checking if
the cell falls in the expansion region of an obstacle.
This model of robot and obstacle leads to a very ef-
ficient test for collision.

We extend the above approach for the AGV do-
main. The Local Path Planner represents the vehicle
as a point object and expands an obstacle cell in two
concentric circles. The inner circle is called the hard
expansion, and is considered a hard obstacle. The
presence of the �point� vehicle in a hard expansion
cell implies imminent collision. This is encoded by
associating an extremely high cost for being in that
cell. The ring between the inner and outer circle is
called the soft expansion. It is an area that is not very
desirable for the vehicle to be in, unless there is no
other option. The inner cells of the soft expansion
are considered as far less desirable than the outer
cells. This is encoded by using a higher cost for the
inner cells than the outer cells.

CajunBot is 1.5 m wide, that is, 0.75 m wide
from center of the body to a side. Hence, the hard
expansion radius is set to 1 m, giving an extra dis-
tance of 0.25 m for sensor and vehicle control inac-
curacies. The soft expansion radius is set to 2.5 m.
The combination of hard and soft expansion ensures
that the path chosen using the discrete algorithm is
navigable by CajunBot even though the vehicle is
rectangular, and not circular.

4.3. Navigator

The Navigation Module is responsible for executing
the plan generated by the Local Path Planner taking

572 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob



into account the vehicle’s dynamics. As shown in
Figure 8, the module takes the Navigation Plan, the
Vehicle State, and Safety Signals as input, and gen-
erates Vehicle Control Commands for the Control
Drivers Module and the Next Waypoint �index to
next global path waypoint� for the Local Path Plan-
ner Module.

It is the Navigation Module’s responsibility to
make the vehicle drive smoothly even when succes-
sive straight-line segments in the input plan are at
sharp angles and have different speed limits. To pro-
vide such a driving experience, the Navigation Mod-
ule performs four tasks: Instantaneous steering
guide, instantaneous speed guide, steering control-
ler, and speed controller, as elaborated upon next.

Instantaneous steering guide: The instanta-
neous steering guide determines the desired head-
ing for the vehicle, in order to follow the Navigation
Plan provided by the Local Path Planner. If the ve-
hicle is not on the path suggested in the Navigation
Plan, the instantaneous steering guide computes the
instantaneous desired heading to smoothly bring the
vehicle back onto the path. It is the task of the steer-
ing controller to achieve the instantaneous desired
heading so computed.

The instantaneous desired heading is computed
using a variation of the follow-the-carrot method �He-
bert, Thorpe & Stentz, 1997�. The vehicle’s position is
projected on the segment of the Navigation Plan be-
ing executed �see Figure 16�. A carrot point is
marked along this segment at a look-ahead-distance
away from the vehicle’s projected position. The ori-
entation of the line joining the vehicle and the carrot

point gives the instantaneous desired heading. Our
method is different from follow-the-carrot in that the
carrot point is marked at a look-ahead distance on the
current segment, not at a distance on the path. If the
length of the segment is shorter than the look-ahead
distance, we extend the segment for the purpose of
placing the carrot point. In contrast, the follow-the-
carrot method travels along the path to find the car-
rot point.

Instantaneous speed guide: The instantaneous
speed guide computes the desired speed that the ve-
hicle should try to achieve based on its present
speed, the kinematic limits, and the safe speed limit.
The safe speed limit depends on the track speed
given in the Navigation Plan—the safe speed limit
for making turns ahead, and then, if the pause signal
is activated, the safe speed limit to bring the vehicle
to a stop.

Steering controller: The responsibility of the
steering controller is to ensure that the vehicle main-
tains the desired heading. It generates low-level
steering commands for the left and right brakes in
order maintain this desired heading. The low-level
steering commands are generated as a floating point
value between −1 and 1. A negative value refers to
the amount that the left brake is applied, and a posi-
tive value refers to the amount that the right brake is
applied.

The controller uses an incremental proportional
integral differential �PID� to generate steering com-
mands by using the difference between the desired
heading and the present vehicle heading as error in-
put. The controller uses different PID constants at
different speeds, as CajunBot—a skid-steered vehicle
shows varying steering responsiveness for the same
steering commands at different speeds.

Speed controller: The speed controller is re-
sponsible for achieving the desired speed suggested
by the instantaneous speed guide. The speed con-
troller emits a floating point value in the range of −1
to +1, where a negative value represents the amount
of brakes applied, and a positive value represents
the amount of throttle to give. Thus, the controller
will never try to perform both active braking and
throttling at the same time. The speed controller is
also a classic incremental PID controller that uses the
difference between desired speed and present ve-
hicle speed as error input.

Figure 16. Steering guide.

Lakhotia et al.: CajunBot: Architecture and Algorithms • 573

Journal of Field Robotics DOI 10.1002/rob



5. FIELD EXPERIENCE

This section summarizes Team CajunBot’s experience
during the NQE and the 2005 GC Final.

The primary goal of the team was to be among
the GC finalists, and travel over 11.8 km �over 7.3
miles�, the distance traveled by Red Team’s Sand
Storm in 2004 GC. Due to its inherent low maximum
speed 10.35 m/s �23 miles/h�, CajunBot was never a
contender to win the race based on the speed against
the faster competitors, such as Sandstorm and Stan-
ley. Further, the Max IV ATV, the underlying vehicle,
is not normally used to transport for very long dis-
tances, or run continuously for hours. So, we were
unsure if the vehicle’s mechanics would hold to-
gether for the entire run. However, we were assured
by the manufacturer and the dealer that the vehicle
was rugged enough to last that far. In any case, the
team felt that the core problems to be solved were in
software, and that our ability to solve them could be
amply demonstrated by successfully completing the
NQE and traveling a significant distance in the final.

Indeed during the NQE and GC, CajunBot dem-
onstrated the ability to navigate the course, control
speed, and detect and avoid obstacles at reasonable
speeds. In the GC final, CajunBot started at the 21st
position and covered about 28.324 km �17.6 miles�
before it died due to a mechanical failure. CajunBot
was placed 15th on the basis of the distance covered.
Along the way, it overtook two vehicles that were still
in the running, achieved its maximum speed of
10.35 m/s, and covered the 28.324 km distance at an
average speed of 4.95 m/s �11 miles/h�.

5.1. National Qualifying Event „NQE…

Of the six NQE runs, CajunBot completed two runs
�Runs 4 and 5�, ran into the last car on the final
stretch in Run 6, did not compete in Run 3 because
of a mechanical failure, suddenly stopped after go-
ing through the tunnel due to a GPS/INS-related
failure in Run 2, and climbed the hay bails when
approaching the tunnel due to a rounding error in
the path planner in Run 1.

Run 1: In the first run of the qualification round,
CajunBot started well; passing through the gates and
cones, going up the slope, and, through the speed
section. The next part of the course was a narrow
section bounded by hay bails which lead to the tun-
nel. While going through this section, CajunBot
made a sudden left turn to avoid the hay bails on the

right, and in so doing climbed up on the bails on the
left. All three wheels on the left side of CajunBot
were off-ground as the vehicle tried to climb the hay
bail. Ironically, bringing the vehicle back on the track
required spinning the wheels which were in the air
and thus without traction. This was the first time we
experienced the limitation of skid steering. CajunBot
had to be taken off the track.

Of course, the incident would not have hap-
pened if CajunBot had chosen a straight path along
the center of the route. We were puzzled why it did
not do so. The reason turned out to be a rounding
error in the mapping of a curve path to the grid cell.
The effect of the rounding error was magnified be-
cause the location that was rounded off was very
close to the vehicle, leading to a very high change in
instantaneous heading. Ironically, again, the round-
ing error was not a complete oversight. The single
line of faulty code was annotated as “FIX ME” for
later. The approximate calculation was put in place,
to be corrected when other pieces were completed.
Addressing the FIX ME never became a priority be-
cause it never led to any failure until that NQE Run.

Run 2: Very much like the first run, for the sec-
ond NQE run, CajunBot started confidently, avoid-
ing the initial set of obstacles, passing through the
gates and the slope. In the speed section, the vehicle
reached its top speed of 23 miles/h. As expected
from our testing in the simulator, CajunBot followed
a straight-line path through the narrow section
bounded by hay bails and the tunnel that followed.
It avoided the tires and stationary cars, and went
swiftly through the gravel section. The navigation
system was impeccable as it made a smooth curve
by the wall, passing through the narrow section be-
tween the cones and the wall. And then, CajunBot
simply stopped. After waiting for about 10 min, the
vehicle was manually driven off the track.

The analysis of the logged data revealed a sud-
den change in the GPS height value in the region
where the vehicle stopped. The height value �Z� had
jumped by 30 m in a fraction of a second causing the
software to detect a wall-like obstacle in front of the
robot. The entire region was filled with the obstacles,
forcing the navigation software to stop giving paths.

The reason for the spike in the Z value turned
out to be due to loss of GPS signal in the tunnel.
After the GPS signal was lost, the INS started using
ded-reckoning to estimate change in its position.
Even after passing through the tunnel and regaining
the GPS signal, the INS continued ded-reckoning, or

574 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob



so we understand. At some point, it switched from
ded-reckoning to using the Z-value reading from the
GPS. But by then, ded-reckoning errors had accumu-
lated and we experienced a sudden spike in the
data.

A median filter was added to the software,
which monitors the data from the GPS/INS. The fil-
ter discards the data if any unreasonable rate of
change in the height and position information of the
GPS/INS data was detected. Also, upon detecting a
spike in data, the obstacle detection module also
flushes its spatiotemporal data to ensure that the
data before and after the spike are not mixed during
analysis.

Run 3: As CajunBot was being brought for the
third run, it was observed that the vehicle was
steered incorrectly while been driven using the RC
control. The reason turned out to be a broken trans-
mission. We had to forgo this run as the vehicle was
not in operational condition.

This was a good lesson about the consequences
of using an uncommon vehicle. The nearest dealer of
Max ATVs was about 320 km �200 miles� away. We
were extremely lucky that “2 The Max ATV” dealer
was very magnanimous. She was willing to bring a
brand new Max IV ATV to us, and allow us to scav-
enge it for spares, at no additional cost but to replace
the parts when we were done. The team changed the
entire transmission of the vehicle in less than 7 h
and was ready for the fourth run the next morning.

Run 4: The fourth run was the first successful
run for CajunBot at the NQE. The vehicle started
smoothly, detected and avoided every obstacle, and
successfully completed the run.

For the fourth run, the speed section was shifted
to a more bumpy stretch as compared to the earlier
runs. The logged data showed that CajunBot saw a
line of false obstacles a couple of times when the
vehicle was at its maximum speed on a considerably
bumpy track. The sensors were pointing way far
apart. The top lidar was aimed at 25 m in front of
the robot, whereas the bottom lidar was aimed at
7 m in front of the robot. During testing a few days
before the NQE, the configuration of the sensors was
changed from the one described in Figure 5. The bot-
tom lidar was reoriented to reduce the blind spots at
turns. This change had the unintended consequence
of increasing false obstacles in rough conditions. The
configuration of Figure 5 was chosen to ensure rapid
creation of triangles that satisfied the spatiotemporal
constraints. With only 0.3 m separation in their

range, triangles of Figure 10 could be created using
the global points resulting from the most recent
scans of the two lidars. Increasing the separation in
their range to 18 m significantly decreased the
chances of grouping beams from the most recent
scans of the two lidars. When the global points from
the two lidars were grouped, one would expect them
to be temporally apart, and therefore the triangles
were prone to errors. By increasing the number of
such triangles, we increased the chances of detecting
false obstacles. We could address the problem by re-
verting the sensor configuration. But, doing so
implied more risk since we did not have the time to
test the effect of the change. Hence, the team decided
not to make any changes and live with the
consequences.

Run 5: The fifth run was also a successful run,
with the only difference being that the vehicle could
not detect the lower leg of the tank trap, placed in
the extreme end of the run. It brushed the tank trap
on its way to the end of the course.

Low data density on the lower leg of the tank
trap caused the software not to detect it as an ob-
stacle. A solution for this was to increase the time for
which the lidar data are used to form the triangles or
to point the lidar’s closer, such that there is more
data density. The first option was ruled out as the
GPS signal was not reliable after the vehicle passes
through the tunnel. Increasing the time might have
led to an increase in false obstacles. The second op-
tion was not tested in the recent past, hence, the
team decided to keep the same configuration for the
rest of the runs.

Run 6: The final run of the NQE, Run 6, was a
near-perfect run until the very last part. The last
200 m of the track had two cars and a tank trap as
obstacles in the path. CajunBot detected and
avoided the first car perfectly. However, while trying
to avoid the second car, it hit the car in the corner.
Like the first run, CajunBot’s left wheels were in the
air and it needed to spin those wheels to turn right.
CajunBot had to be taken off the track.

Based on the analysis of the logged data, as Ca-
junBot turned to avoid the first car, the second car
was in the blind spot of the top lidar. By the time the
bottom lidar could detect the car as an obstacle, Ca-
junBot was dangerously close to it. The delay in de-
tecting the obstacle did not give enough time for the
local path planner to steer the vehicle around the
obstacle. The vehicle hit the right rear end of the car
while trying to steer away from it.

Lakhotia et al.: CajunBot: Architecture and Algorithms • 575

Journal of Field Robotics DOI 10.1002/rob



Having completed two runs successfully and
one near successful run, CajunBot was selected as
one of the 23 finalists to compete in the DARPA
Grand Challenge 2005. The team and the bot moved
to Primm, Nevada.

In the time between the NQE and the GC final,
we were afforded a window of opportunity to fix the
configuration of our lidars. We reverted the lidars to
the configuration given in Figure 5 and tested it near
Slash X, the starting point of the 2004 Grand
Challenge.

5.2. DARPA Grand Challenge Final Run

In the grand finale, CajunBot was the 21st robot to
start. She was flagged off at 8 :30 a.m.; just about
that time the weather took a turn. The winds picked
up, blowing through the dry lake bed, and caused a
big sand storm. In no time, CajunBot was out of
sight, in the thick of the storm. We knew that the
lidars could not see through the sand, and were
pretty nervous. To our relief, the DARPA scoreboard
showed that CajunBot was still moving. It took
about an hour for CajunBot to complete the
12.874 km �8 mile� loop and pass the spectator stand.
By then, the weather had settled and she was mov-
ing really well. For the next hour, CajunBot passed
several disabled vehicles and two vehicles still in the
run. We were pleased that she was going strong. It
was now poised to enter a region that was also part
of the tail end of the course. The leading bots, Stan-
ley, Sandstorm, and Highlander, were about to enter
this region. To give precedence to the leading bots,
CajunBot was paused. It took about 45 min for the
lead bots to clear that path. When CajunBot was un-
paused, she simply failed to start. After attempting
to restart it for 20 min, the vehicle was disabled.

The reason why CajunBot failed to restart
turned out to be very mundane, and related to the
transmission failure before Run 3. The transmission
has two plungers that connect to two levers. One
lever is for braking the left wheels or engaging the
left transmission. The second one is for the right
side. We control each lever using a lead-screw linear
actuator. The actuators consume current when the
lead screw is tightened to pull a load. However, if
power is cut off, it stays locked in a position. We
mapped the thrust of the actuator to a range from 0
to 1, to correspond to the maximum desired move-
ment of the levers. After transmission failure, we did
not calibrate the actuators correctly. Its “1” was

mapped to a position that the transmission could not
physically reach. When the vehicle was put into
pause mode, to engage the brakes the levers had to
be moved to “1.” However, this position could not
be reached and the motor controller continued to at-
tempt to move it. In the process, for 45 min, the mo-
tor was fed its peak current, a current it can with-
stand only for short duration. That caused the
motors on the actuators to burn out.

Further analysis of the logged data revealed
how CajunBot weathered the sandstorm. The on-
board video showed CajunBot completely engulfed
in the sand. That led it to see “false obstacles,” forc-
ing it to go out of the track to avoid them. When the
vehicle strays too far outside the lateral boundary,
we disable path planning and force it back to the
track. Once it was back on track it would repeat the
same behavior, thus appearing as though it is wan-
dering aimlessly. However, after the sandstorm
cleared, the video shows CajunBot running very
much along the middle of the track, and passing
stalled or stopped vehicles. The logged data show
absolutely zero-false obstacles throughout the run
after the storm, even in areas where the vehicle ex-
perienced severe bumps.

Regardless of the outcome of the race, Team Ca-
junBot came away with a much better understand-
ing of autonomous navigation. We are very confi-
dent that, but for the mechanical failures, the vehicle
would have completed the track, especially since
there was no weather-related disturbance in the later
part of the day. The team is looking forward to the
next challenge and is working on the new proposed
entry, the RaginBot—a 2004 Jeep Rubicon.

6. FUTURE WORK

Our experience suggests that field testing is one of the
most expensive parts of developing an AGV. To field
test, one must have a fully operational vehicle, a field
for testing it, correct weather conditions, and a sig-
nificant amount of staff. Unless the procedures for
bringing the vehicle to the field are very well-defined,
small issues, such as insufficient gas in the generator,
can consume significant time.

Having a fully operational vehicle is no small re-
quirement, given that an AGV has linear dependen-
cies between the automotive, the electromechanical

576 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob



components, the electrical, electronics, sensors, and
the software. Failure in any one of the components
can hold back the testing.

Yet, testing in the current generation of simula-
tion environments, such as CBSim, Stage �Gerkey et
al., 2003� and Gazebo �Vaughan, 2000� is quite lim-
ited. While these environments are good for doing in-
tegration testing, their simulation abilities are quite
limited in providing information about how the ve-
hicle may perform in the real world, such as, in dif-
ferent terrains and weather conditions.

We are working on developing a higher fidelity
simulation and visualization of the real world and the
vehicle. The environment will utilize a cluster of com-
puters and a six-surface cave to create an immersive
visualization of real-time simulation.

There is another aspect of field testing that can be
improved. How does one evaluate the performance
of a vehicle in the field? A report of observations by
the testing team—while useful—leaves room for sub-
jectivity and human error. A 10 h run can be pretty
long for someone to correctly recount and to pay at-
tention for taking notes.

There is ongoing work in our lab to develop au-
tomated objective methods to analyze logged data
from a field run and to evaluate a vehicle’s
performance.

In addition, we are also working on improving
the system further, such as, to introduce camera vi-
sion capability, improve reliability by introducing the
ability to restart individual software components or
the whole system, and porting the system to a com-
pletely new vehicle, Ragin’Bot, a 4�4 Jeep Wrangler.

7. CONCLUSION

Participating in the DARPA Grand Challenge has
been unlike anything we have experienced during
normal research. The most significant difference was
to have an end-to-end system that would perform in
a real-world situations and, in the course of the de-
velopment, solve some significant research problems.

The requirement to develop an end-to-end sys-
tem implied that we could not have tunnel vision and
get carried away improving only one component of
the system. The fact that the vehicle would perform
in real-world situations required us to consider solu-
tions for a multitude of scenarios, rather than be con-
tent with developing solutions for some simplified
scenarios.

This paper presents the overall hardware and
software architecture of the CajunBot. More impor-
tantly, it highlights the specific innovations resulting
from the effort. It is hoped that these innovations, in
some small way, help in advancing the overall field of
AGVs.

ACKNOWLEDGMENTS

Special thanks to following Team CajunBot members
for their contributions: Adam Lewis, Adrian Aucoin,
Christopher Mire, Daro Eghagha, Joshua
Brideveaux, Muralidar Chakravarthi, Patrick Lan-
dry, Santhosh Padmanabhan, and Vidhyalakshmi
Venkitakrishnan.

The project was supported in part by the Loui-
siana Governor’s Information Technology Initiative,
and benefited from the sponsorship of C&C Tech-
nologies, MedExpress Ambulance Service, Lafayette
Motors, Firefly Digital, Oxford Technical Solutions,
and SICK, USA, Inc.

REFERENCES

Barraquand, J., Langlois, B., & Latombe, J.C. �1992�. Nu-
merical potential field techniques for robot path plan-
ning. IEEE Transactions on Systems, Man, and Cyber-
netics, 22, 224–241.

de Smith, M.J. �2004�. Distance transforms as a new tool in
spatial analysis, urban planning, and gis. Environ-
ment and Planning B: Planning and Design, 31, 85–
104.

Dubins, L.E. �1957�. On curves of minimum length with a
constraint on average curvature, and with prescribed
initial and terminal positions and tangents. American
Journal of Mathematics, 79, 497–516.

Feng, D., Singh, S., & Krogh, B.H. �1990�. Implementation
of dynamic obstacle avoidance on the CMU NavLab.
Paper presented at the 1990 IEEE Conference on Sys-
tems Engineering �pp. 208–211�.

Gerkey, B., Vaughan, R.T., & Howard, A. �2003�. The
Player/Stage project: Tools for multirobot and distrib-
uted sensor systems. Paper presented at the 11th In-
ternational Conference on Advanced Robotics
�ICAR’03�, Coimbra, Portugal �pp. 317–323�.

Hebert, M., Thorpe, C., & Stentz, A. �Eds.� �1997�. Intelli-
gent unmanned ground vehicles: Autonomous navi-
gation research at Carnegie Mellon University. New
York: Kluwer Academic.

La Valle, S.M. �2006�. Planning algorithms �chap. 1, pg. 3�.
Cambridge, U.K.: Cambridge University Press.

Maida, A.S., Golconda, S., Mejia, P., & Lakhotia, A. �2006�.
Subgoal-based local navigation and obstacle avoid-

Lakhotia et al.: CajunBot: Architecture and Algorithms • 577

Journal of Field Robotics DOI 10.1002/rob



ance using a grid-distance field. International Journal
of Vehicle Autonomous Systems �in press�.

Marshall, A.D. �1999�. Programming in C, Unix system
calls and subroutines using C, chapter IPC: Shared
memory. Retrieved from http://www.cs.cf.ac.uk/
Dave/C/node27.html.

Pardo-Castellote, S.S.G., & Hamilton, M. �1999�. NDDS:
The real-time publish-subscribe middleware �Techni-
cal report�. Real-Time Innovations, Inc.

Scheuer, A., & Laugier, C. �1999�. Planning suboptimal
and continuous-curvature paths for carlike robots. Pa-
per presented at the IEEE International Conference on
Intelligent Robots and Systems, Victoria, Canada �Vol.
1, pp. 25–31�.

Scheuer, A., & Xie, M. �1999�. Continuous-curvature trajec-
tory planning for maneuverable non-holomorphic ro-
bots. Paper presented at the IEEE-RSJ International
Conference on Intelligent Robots and Systems �Vol. 3,
pp. 1675–1680�.

Shackleford, W.P., Proctor, F.M., & Michaloski, J.L. �2000�.
The neutral message language: A model and method
for message passing in heterogeneous environments.
Paper presented at the World Automation Conference,
Maui, Hawaii. Retrieved from http://
www.isd.mel.nist.gov/documents/shackleford/
Neutral_Message_Langu%age.pdf.

Simmons, R., & James, D. �2001�. IPC—A reference
manual, version 3.6. Robotics Institute, Carnegie Mel-
lon University. Retrieved from http://
www.cs.cmu.edu/afs/cs/project/TCA/ftp/
IPC_Manual.pdf.

Stentz, A., & Hebert, M. �1995�. A complete navigation sys-
tem for goal acquisition in unknown environments.
Autonomous Robots, 2�2�, 127–145.

Vaughan, R.T. �2000�. Gazebo: A multiple robot simulator
�Technical Report IRIS-00-394�. Institute for Robotics
and Intelligent Systems, School of Engineering, Uni-
versity of Southern California.

578 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob


